
Stat 340

Multiple testing 
(aka multiple comparisons)



When a null hypothesis is true,
what is the probability that you reject at level .05?

• For simplicity, throughout this lecture “rejecting a null hypothesis” means the 
p-value is less than .05.


• If the null hypothesis is true, what is the probability that you reject?


• If the null hypothesis is false, should the probability of rejection be larger or 
smaller?



What happens when you test 100 null hypotheses?

• Suppose you test 100 null hypotheses, all of which are true, all tests 
independent.


• Let X be the number of null hypotheses with p-values less than .05.


• What is the distribution of X?



Why is this a problem?

• What if you only talked about the p-values that are less than .05?



Here are some good practices…

• Good practice: specify all the hypothesis tests that you are going to perform **before you actually 
look at the p-values**


• Good practice: tell people all the tests you’ve performed


• Good practice: don’t study data that lots of people have studied


• Good practice: multiply your p-values by the number of tests you’ve performed.  This has a fancy 
name.  So you can be fancy.  It’s called the “Bonferroni correction”. 
https://en.wikipedia.org/wiki/Bonferroni_correction


• What if your p-value is .01, that sounds great… but you tested 10 null hypotheses, what is 
your new Bonferroni p-value?


• Good practice: If you want to get serious about multiple testing, you can learn about “false 
discovery rates.” It isn’t as mean as Bonferroni.

https://en.wikipedia.org/wiki/Bonferroni_correction


What are some cases where multiple testing occurs,
… but it might not be so obvious.



Let’s do a simulation.

• #  multiple testing


• # Let's do a simulation.


• library(magrittr)


• n = 1000


• p = 20


• # Suppose you have these features:


• X = matrix(rnorm(n*p), nrow = n)


• dim(X)


• # Suppose there is a binary outcome, 


• #  which only depends on ONE of the feature.


• # but this game is a bit realistic because


• #   we don't yet get to see which feature actually matters.


• the_real_feature = sample(1:p,1)  


• # logistic probability with beta = 1


• p = exp(.1*X[,the_real_feature])/(1+exp(.1*X[,the_real_feature]))


• y = rbinom(n,1,p)


• fit = glm(y~X, family = binomial)


• # summary(fit)


• # here is a histogram of the beta-hats:


• summary(fit)$coefficients[,1] %>% hist


• # here is the beta-hat of the real feature:


• summary(fit)$coefficients[the_real_feature+1,1]


• # here is it's p-value:


• p_value_for_the_good_one = summary(fit)$coefficients[the_real_feature+1,4]



