Multiple testing (aka multiple comparisons)


Stat 340

When a null hypothesis is true, what is the probability that you reject at level .05?

- For simplicity, throughout this lecture "rejecting a null hypothesis" means the p-value is less than .05.
- If the null hypothesis is true, what is the probability that you reject?
- If the null hypothesis is false, should the probability of rejection be larger or smaller?

What happens when you test 100 null hypotheses?

- Suppose you test 100 null hypotheses, all of which are true, all tests independent.
- Let X be the number of null hypotheses with p-values less than .05.
- What is the distribution of X?

Why is this a problem?

• What if you only talked about the p-values that are less than .05?

Here are some good practices...

- look at the p-values**
- Good practice: tell people all the tests you've performed
- Good practice: don't study data that lots of people have studied
- name. So you can be fancy. It's called the "Bonferroni correction". https://en.wikipedia.org/wiki/Bonferroni_correction
 - your new Bonferroni p-value?
- Good practice: If you want to get serious about multiple testing, you can learn about "false discovery rates." It isn't as mean as Bonferroni.

Good practice: specify all the hypothesis tests that you are going to perform **before you actually

Good practice: multiply your p-values by the number of tests you've performed. This has a fancy

• What if your p-value is .01, that sounds great... but you tested 10 null hypotheses, what is

What are some cases where multiple testing occurs, ... but it might not be so obvious.

Let's do a simulation.