
Stat 340

Multiple testing
(aka multiple comparisons)

When a null hypothesis is true,
what is the probability that you reject at level .05?

• For simplicity, throughout this lecture “rejecting a null hypothesis” means the
p-value is less than .05.

• If the null hypothesis is true, what is the probability that you reject?

• If the null hypothesis is false, should the probability of rejection be larger or
smaller?

What happens when you test 100 null hypotheses?

• Suppose you test 100 null hypotheses, all of which are true, all tests
independent.

• Let X be the number of null hypotheses with p-values less than .05.

• What is the distribution of X?

Why is this a problem?

• What if you only talked about the p-values that are less than .05?

Here are some good practices…

• Good practice: specify all the hypothesis tests that you are going to perform **before you actually
look at the p-values**

• Good practice: tell people all the tests you’ve performed

• Good practice: don’t study data that lots of people have studied

• Good practice: multiply your p-values by the number of tests you’ve performed. This has a fancy
name. So you can be fancy. It’s called the “Bonferroni correction”. 
https://en.wikipedia.org/wiki/Bonferroni_correction

• What if your p-value is .01, that sounds great… but you tested 10 null hypotheses, what is
your new Bonferroni p-value?

• Good practice: If you want to get serious about multiple testing, you can learn about “false
discovery rates.” It isn’t as mean as Bonferroni.

https://en.wikipedia.org/wiki/Bonferroni_correction

What are some cases where multiple testing occurs,
… but it might not be so obvious.

Let’s do a simulation.

• # multiple testing

• # Let's do a simulation.

• library(magrittr)

• n = 1000

• p = 20

• # Suppose you have these features:

• X = matrix(rnorm(n*p), nrow = n)

• dim(X)

• # Suppose there is a binary outcome,

• # which only depends on ONE of the feature.

• # but this game is a bit realistic because

• # we don't yet get to see which feature actually matters.

• the_real_feature = sample(1:p,1)

• # logistic probability with beta = 1

• p = exp(.1*X[,the_real_feature])/(1+exp(.1*X[,the_real_feature]))

• y = rbinom(n,1,p)

• fit = glm(y~X, family = binomial)

• # summary(fit)

• # here is a histogram of the beta-hats:

• summary(fit)$coefficients[,1] %>% hist

• # here is the beta-hat of the real feature:

• summary(fit)$coefficients[the_real_feature+1,1]

• # here is it's p-value:

• p_value_for_the_good_one = summary(fit)$coefficients[the_real_feature+1,4]

